Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Kliniceskaa Mikrobiologia i Antimikrobnaa Himioterapia ; 24(4):295-302, 2022.
Article in Russian | EMBASE | ID: covidwho-20242710

ABSTRACT

Objective. To study risk factors, clinical and radiological features and effectiveness of the treatment of invasive aspergillosis (IA) in adult patients with COVID-19 (COVID-IA) in intensive care units (ICU). Materials and methods. A total of 60 patients with COVID-IA treated in ICU (median age 62 years, male - 58%) were included in this multicenter prospective study. The comparison group included 34 patients with COVID-IA outside the ICU (median age 62 years, male - 68%). ECMM/ISHAM 2020 criteria were used for diagnosis of CAPA, and EORTC/MSGERC 2020 criteria were used for evaluation of the treatment efficacy. A case-control study (one patient of the main group per two patients of the control group) was conducted to study risk factors for the development and features of CAPA. The control group included 120 adult COVID-19 patients without IA in the ICU, similar in demographic characteristics and background conditions. The median age of patients in the control group was 63 years, male - 67%. Results. 64% of patients with COVID-IA stayed in the ICU. Risk factors for the COVID-IA development in the ICU: chronic obstructive pulmonary disease (OR = 3.538 [1.104-11.337], p = 0.02), and prolonged (> 10 days) lymphopenia (OR = 8.770 [4.177-18.415], p = 0.00001). The main location of COVID-IA in the ICU was lungs (98%). Typical clinical signs were fever (97%), cough (92%), severe respiratory failure (72%), ARDS (64%) and haemoptysis (23%). Typical CT features were areas of consolidation (97%), hydrothorax (63%), and foci of destruction (53%). The effective methods of laboratory diagnosis of COVID-IA were test for galactomannan in BAL (62%), culture (33%) and microscopy (22%) of BAL. The main causative agents of COVID-IA are A. fumigatus (61%), A. niger (26%) and A. flavus (4%). The overall 12-week survival rate of patients with COVID-IA in the ICU was 42%, negative predictive factors were severe respiratory failure (27.5% vs 81%, p = 0.003), ARDS (14% vs 69%, p = 0.001), mechanical ventilation (25% vs 60%, p = 0.01), and foci of destruction in the lung tissue on CT scan (23% vs 59%, p = 0.01). Conclusions. IA affects predominantly ICU patients with COVID-19 who have concomitant medical conditions, such as diabetes mellitus, hematological malignancies, cancer, and COPD. Risk factors for COVID-IA in ICU patients are prolonged lymphopenia and COPD. The majority of patients with COVID-IA have their lungs affected, but clinical signs of IA are non-specific (fever, cough, progressive respiratory failure). The overall 12-week survival in ICU patients with COVID-IA is low. Prognostic factors of poor outcome in adult ICU patients are severe respiratory failure, ARDS, mechanical ventilation as well as CT signs of lung tissue destruction.Copyright © 2022, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy. All rights reserved.

2.
J Clin Lab Anal ; 37(1): e24816, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2325150

ABSTRACT

BACKGROUND: Aspergillus endocarditis (AE) is a rare fatal infection. The infection is often reported in patients with prosthetic heart valves, immunosuppressed, broad-spectrum antimicrobial use regimens, and drug abusers. METHODS: Herein, we report a rare case of native mitral valve AE in a 63-year-old man, with a probable COVID-19-associated invasive pulmonary aspergillosis nine months ago treated with antifungals. RESULTS: In the last admission, the lethargy, neurological deficit, and septic-embolic brain abscess in brain MRI led to suspicion of infective endocarditis. Transesophageal two-dimensional echocardiography and color Doppler flow velocity mapping showed a large highly mobile mass destroying leaflet and severe mitral regurgitation. The Surgical valve replacement is performed. The surgical valve replacement is performed. Direct microscopic examination and culture of the explanted and vegetative mass revealed Aspergillus section Fumiagati confirmed by molecular method. Despite the administration of voriconazole and transient improvement the patient expired. CONCLUSION: As AE is a late consequence of COVID-19-associated invasive pulmonary aspergillosis, therefore, long-term follow-up of invasive aspergillosis, and prompt diagnosis of surgical and systemic antifungal therapy treatment, are warranted to provide robust management.


Subject(s)
COVID-19 , Endocarditis , Invasive Pulmonary Aspergillosis , Male , Humans , Middle Aged , Invasive Pulmonary Aspergillosis/complications , COVID-19/complications , Endocarditis/complications , Endocarditis/diagnostic imaging , Aspergillus , Voriconazole/therapeutic use
3.
Mycoses ; 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2324018

ABSTRACT

Aspergillus fumigatus is an opportunistic pathogen that primarily affects the lungs and frequently elicits an allergic immune response in human hosts via inhalation of its airborne asexual spores (conidia). In immunocompromised individuals, the conidia of this fungus can germinate in the lung and result in severe systemic infections characterised by widespread tissue and organ damage. Conversely, in healthy hosts, the innate immune system is instrumental in eliminating the conidia and preventing disease progression. As with numerous other pathogenic fungi, A. fumigatus possesses a set of virulence factors that facilitate its infective mechanism and the circumvention of immune defences in susceptible hosts. The intrinsic capacity of A. fumigatus to form complex 3D-structured biofilms, both on biotic and abiotic surfaces, represents a key determinant of its evasion of the host immune system and resistance to antifungal drugs. This review delineates the pivotal role of A. fumigatus biofilm structure and function as a significant virulence factor in pathogenic infections, such as aspergilloma and invasive pulmonary aspergillosis (IPA). Additionally, we discuss the importance for the development of novel antifungal drugs as drug-resistant strains continue to evolve. Furthermore, co-infections of A. fumigatus with other nosocomial pathogens have a substantial impact on patient's health outcomes. In this context, we provide a brief overview of COVID-19-associated pulmonary aspergillosis (CAPA), a recently documented condition that has gained attention due to its associated high degree of severity.

4.
Journal of Biological Chemistry ; 299(3 Supplement):S68, 2023.
Article in English | EMBASE | ID: covidwho-2319732

ABSTRACT

Pulmonary aspergillosis (PA) is a category of respiratory illnesses that significantly impacts the lives of immunocompromised individuals. However, new classifications of secondary infections like influenza associated aspergillosis (IAA) and COVID-19 associated pulmonary aspergillosis (CAPA) only exacerbate matters by expanding the demographic beyond the immunocompromised. Meanwhile anti-fungal resistant strains of Aspergillus are causing current treatments to act less effectively. Symptoms can range from mild (difficulty breathing, and expectoration of blood) to severe (multi organ failure, and neurological disease). Millions are affected yearly, and mortality rates range from 20-90% making it imperative to develop novel medicines to curtail this evolving group of diseases. Chalcones and imidazoles are current antifungal pharmacophores used to treat PA. Chalcones are a group of plant-derived flavonoids that have a variety of pharmacological effects, such as, antibacterial, anticancer, antimicrobial, and anti-inflammatory activities. Imidazoles are another class of drug that possess antibacterial, antiprotozoal, and anthelmintic activities. The increase in antifungal resistant Aspergillus and Candida species make it imperative for us to synthesize novel pharmacophores for therapeutic use. Our objective was to synthesize a chalcone and imidazole into a single pharmacophore and to evaluate its effectiveness against three different fungi from the Aspergillus or Candida species. The chalcones were synthesized via the Claisen-Schmidt aldol condensation of 4-(1H-Imizadol-1-yl) benzaldehyde with various substituted acetophenones using aqueous sodium hydroxide in methanol. The anti-fungal activity of the synthesized chalcones were evaluated via a welldiffusion assay against Aspergillus fumigatus, Aspergillus niger, and Candida albicans. The data obtained suggests that chalcone derivatives with electron-withdrawing substituents are moderately effective against Aspergillus and has the potential for further optimization as a treatment for pulmonary aspergillosis. This project was supported by grants from the National Institutes of Health (NIH), National Institute of General Medicine Sciences (NIGMS), IDeA Networks of Biomedical Research Excellence (INBRE), Award number: P20GM103466. The content is solely the responsibility of the authors and do not necessarily represent the official views of the NIH.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

5.
Critical Care Conference: 42nd International Symposium on Intensive Care and Emergency Medicine Brussels Belgium ; 27(Supplement 1), 2023.
Article in English | EMBASE | ID: covidwho-2318615

ABSTRACT

Introduction: In this study, we share the results of immunosuppressed patients who suffered from acute respiratory distress syndrome (ARDS) secondary to COVID-19 pneumonia managed in our ICU. Method(s): We tracked all patients admitted to ICU of a Tertiary Hospital diagnosed with severe SARS-COV2 pneumonia from March 1, 2020 to January 31, 2022. The definition of Immunocompromised patient is based on history of transplantation, active neoplasia, autoimmune diseases or HIV. Collected data includes: sex, age, type of immunosuppression, vaccination, mechanical ventilation, ECMO VV, incidence of superinfections and mortality. Result(s): From a cohort of 425 patients, 55 met the inclusion criteria. 33% were women and 67% male. The average age was 58 years for women and 62 years for men. Out of these patients, 27% had solid organ transplants. 40% suffered from neoplasic disease. 27% had autoimmune diseases and were under treatment with immunosuppressants. 3 had HIV. Only the 29% had received at least 1 dose of COVID 19 vaccine. 80% required orotracheal intubation. 3.64% (2) required Veno-Venous ECMO. 61% presented bacterial superinfection, with the most frequent germs being Pseudomonas aeruginosa and Enterococcus. 36% had viral superinfection, being cytomegalovirus the most frequent one. 32% had fungal superinfection, mainly by Aspergillus fumigatus. 27% did not suffer any superinfection. 40% of the total sample died. After logistic regression, in our model (AUC 83,4% (Se 57.1%, Sp 87.9%), we identified need of intubation as independent variable of mortality (OR 27,06 IC95% 1.76-415.55, p = 0.018). Conclusion(s): Immunocompromised patients with ARDS secondary to COVID-19 pneumonia present high mortality, with statistically significant difference when mechanical ventilation is needed. The most frequently isolated germs causing superinfection in this group of patients are bacterias. We believe that this group of patients require special care in our ICU units and an in-depth analysis and study to optimize their prognosis.

6.
Curr Fungal Infect Rep ; : 1-12, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2315888

ABSTRACT

Purpose of Review: This review gives an overview of the diseases caused by Aspergillus, including a description of the species involved and the infected clinical systems. We provide insight into the various diagnostic methods available for diagnosing aspergillosis, particularly invasive aspergillosis (IA), including the role of radiology, bronchoscopy, culture, and non-culture-based microbiological methods. We also discuss the available diagnostic algorithms for the different disease conditions. This review also summarizes the main aspects of managing infections due to Aspergillus spp., such as antifungal resistance, choice of antifungals, therapeutic drug monitoring, and new antifungal alternatives. Recent Findings: The risk factors for this infection continue to evolve with the development of many biological agents that target the immune system and the increase of viral illnesses such as coronavirus disease. Due to the limitations of present mycological test methods, establishing a fast diagnosis is frequently difficult, and reports of developing antifungal resistance further complicate the management of aspergillosis. Many commercial assays, like AsperGenius®, MycAssay Aspergillus®, and MycoGENIE®, have the advantage of better species-level identification and concomitant resistance-associated mutations. Fosmanogepix, ibrexafungerp, rezafungin, and olorofim are newer antifungal agents in the pipeline exhibiting remarkable activity against Aspergillus spp. Summary: The fungus Aspergillus is found ubiquitously around the world and can cause various infections, from harmless saprophytic colonization to severe IA. Understanding the diagnostic criteria to be used in different patient groups and the local epidemiological data and antifungal susceptibility profile is critical for optimal patient management.

7.
mBio ; 14(2): e0033923, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2308144

ABSTRACT

Invasive fungal infections are a leading cause of death in immunocompromised patients. Current therapies have several limitations, and innovative antifungal agents are critically needed. Previously, we identified the fungus-specific enzyme sterylglucosidase as essential for pathogenesis and virulence of Cryptococcus neoformans and Aspergillus fumigatus (Af) in murine models of mycoses. Here, we developed Af sterylglucosidase A (SglA) as a therapeutic target. We identified two selective inhibitors of SglA with distinct chemical scaffolds that bind in the active site of SglA. Both inhibitors induce sterylglucoside accumulation and delay filamentation in Af and increase survival in a murine model of pulmonary aspergillosis. Structure-activity relationship (SAR) studies identified a more potent derivative that enhances both in vitro phenotypes and in vivo survival. These findings support sterylglucosidase inhibition as a promising antifungal approach with broad-spectrum potential. IMPORTANCE Invasive fungal infections are a leading cause of death in immunocompromised patients. Aspergillus fumigatus is a fungus ubiquitously found in the environment that, upon inhalation, causes both acute and chronic illnesses in at-risk individuals. A. fumigatus is recognized as one of the critical fungal pathogens for which a substantive treatment breakthrough is urgently needed. Here, we studied a fungus-specific enzyme, sterylglucosidase A (SglA), as a therapeutic target. We identified selective inhibitors of SglA that induce accumulation of sterylglucosides and delay filamentation in A. fumigatus and increase survival in a murine model of pulmonary aspergillosis. We determined the structure of SglA, predicted the binding poses of these inhibitors through docking analysis, and identified a more efficacious derivative with a limited SAR study. These results open several exciting avenues for the research and development of a new class of antifungal agents targeting sterylglucosidases.


Subject(s)
Aspergillosis , Invasive Fungal Infections , Pulmonary Aspergillosis , Animals , Mice , Aspergillus fumigatus/genetics , Antifungal Agents/pharmacology , Disease Models, Animal , Aspergillosis/drug therapy , Aspergillosis/microbiology , Pulmonary Aspergillosis/drug therapy
8.
Kliniceskaa Mikrobiologia i Antimikrobnaa Himioterapia ; 24(4):295-302, 2022.
Article in Russian | EMBASE | ID: covidwho-2303447

ABSTRACT

Objective. To study risk factors, clinical and radiological features and effectiveness of the treatment of invasive aspergillosis (IA) in adult patients with COVID-19 (COVID-IA) in intensive care units (ICU). Materials and methods. A total of 60 patients with COVID-IA treated in ICU (median age 62 years, male - 58%) were included in this multicenter prospective study. The comparison group included 34 patients with COVID-IA outside the ICU (median age 62 years, male - 68%). ECMM/ISHAM 2020 criteria were used for diagnosis of CAPA, and EORTC/MSGERC 2020 criteria were used for evaluation of the treatment efficacy. A case-control study (one patient of the main group per two patients of the control group) was conducted to study risk factors for the development and features of CAPA. The control group included 120 adult COVID-19 patients without IA in the ICU, similar in demographic characteristics and background conditions. The median age of patients in the control group was 63 years, male - 67%. Results. 64% of patients with COVID-IA stayed in the ICU. Risk factors for the COVID-IA development in the ICU: chronic obstructive pulmonary disease (OR = 3.538 [1.104-11.337], p = 0.02), and prolonged (> 10 days) lymphopenia (OR = 8.770 [4.177-18.415], p = 0.00001). The main location of COVID-IA in the ICU was lungs (98%). Typical clinical signs were fever (97%), cough (92%), severe respiratory failure (72%), ARDS (64%) and haemoptysis (23%). Typical CT features were areas of consolidation (97%), hydrothorax (63%), and foci of destruction (53%). The effective methods of laboratory diagnosis of COVID-IA were test for galactomannan in BAL (62%), culture (33%) and microscopy (22%) of BAL. The main causative agents of COVID-IA are A. fumigatus (61%), A. niger (26%) and A. flavus (4%). The overall 12-week survival rate of patients with COVID-IA in the ICU was 42%, negative predictive factors were severe respiratory failure (27.5% vs 81%, p = 0.003), ARDS (14% vs 69%, p = 0.001), mechanical ventilation (25% vs 60%, p = 0.01), and foci of destruction in the lung tissue on CT scan (23% vs 59%, p = 0.01). Conclusions. IA affects predominantly ICU patients with COVID-19 who have concomitant medical conditions, such as diabetes mellitus, hematological malignancies, cancer, and COPD. Risk factors for COVID-IA in ICU patients are prolonged lymphopenia and COPD. The majority of patients with COVID-IA have their lungs affected, but clinical signs of IA are non-specific (fever, cough, progressive respiratory failure). The overall 12-week survival in ICU patients with COVID-IA is low. Prognostic factors of poor outcome in adult ICU patients are severe respiratory failure, ARDS, mechanical ventilation as well as CT signs of lung tissue destruction.Copyright © 2022, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy. All rights reserved.

9.
Transcriptomics in Health and Disease, Second Edition ; : 395-435, 2022.
Article in English | Scopus | ID: covidwho-2301705

ABSTRACT

Mycoses are infectious diseases caused by fungi, which incidence has increased in recent decades due to the increasing number of immunocompromised patients and improved diagnostic tests. As eukaryotes, fungi share many similarities with human cells, making it difficult to design drugs without side effects. Commercially available drugs act on a limited number of targets and have been reported fungal resistance to commonly used antifungal drugs. Therefore, elucidating the pathogenesis of fungal infections, the fungal strategies to overcome the hostile environment of the host, and the action of antifungal drugs is essential for developing new therapeutic approaches and diagnostic tests. Large-scale transcriptional analyses using microarrays and RNA sequencing (RNA-seq), combined with improvements in molecular biology techniques, have improved the study of fungal pathogenicity. Such techniques have provided insights into the infective process by identifying molecular strategies used by the host and pathogen during the course of human mycoses. This chapter will explore the latest discoveries regarding the transcriptome of major human fungal pathogens. Further we will highlight genes essential for host–pathogen interactions, immune response, invasion, infection, antifungal drug response, and resistance. Finally, we will discuss their importance to the discovery of new molecular targets for antifungal drugs. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2014, 2022.

10.
Cureus ; 15(3): e36212, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2297940

ABSTRACT

A 55-year-old man was admitted for coronavirus disease 2019 (COVID-19)-related respiratory failure. He was treated with corticosteroids and tocilizumab in the intensive care unit. Aspergillus fumigatus (A. fumigatus) was isolated from his sputum on admission. However, no radiological findings suggesting pulmonary aspergillosis were seen on chest computed tomography (CT). Since the fungus had merely colonized in airways, antifungal drugs were not administered immediately. On day 19 of hospitalization, a high (1→3)-ß-D-glucan (BDG) level was noted. A CT scan on day 22 revealed consolidations with a cavity in the right lung. A. fumigatus was isolated from his sputum again. Thus, we diagnosed the patient with COVID-19-associated pulmonary aspergillosis (CAPA) and started voriconazole. After the treatment, BDG levels and radiological findings were noted to improve. In this case, tocilizumab probably had a critical role in developing the disease. Although antifungal prophylaxis therapy for CAPA is not well established, this case shows that detecting Aspergillus in airway specimens before the disease onset possibly implies a high risk of developing CAPA and is an indicator of antifungal prophylaxis.

11.
J Fungi (Basel) ; 9(4)2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2291054

ABSTRACT

Aspergillus fumigatus is a ubiquitous opportunistic pathogen. We have previously reported that volatile organic compounds (VOCs) produced by A. fumigatus cause delays in metamorphosis, morphological abnormalities, and death in a Drosophila melanogaster eclosion model. Here, we developed A. fumigatus deletion mutants with blocked oxylipin biosynthesis pathways (∆ppoABC) and then exposed the third instar larvae of D. melanogaster to a shared atmosphere with either A. fumigatus wild-type or oxylipin mutant cultures for 15 days. Fly larvae exposed to VOCs from wild-type A. fumigatus strains exhibited delays in metamorphosis and toxicity, while larvae exposed to VOCs from the ∆ppoABC mutant displayed fewer morphogenic delays and higher eclosion rates than the controls. In general, when fungi were pre-grown at 37 °C, the effects of the VOCs they produced were more pronounced than when they were pre-grown at 25 °C. GC-MS analysis revealed that the wild-type A. fumigatus Af293 produced more abundant VOCs at higher concentrations than the oxylipin-deficient strain Af293∆ppoABC did. The major VOCs detected from wild-type Af293 and its triple mutant included isopentyl alcohol, isobutyl alcohol, 2-methylbutanal, acetoin, and 1-octen-3-ol. Unexpectedly, compared to wild-type flies, the eclosion tests yielded far fewer differences in metamorphosis or viability when flies with immune-deficient genotypes were exposed to VOCs from either wild-type or ∆ppoABC oxylipin mutants. In particular, the toxigenic effects of Aspergillus VOCs were not observed in mutant flies deficient in the Toll (spz6) pathway. These data indicate that the innate immune system of Drosophila mediates the toxicity of fungal volatiles, especially via the Toll pathway.

12.
J Fungi (Basel) ; 9(4)2023 Apr 19.
Article in English | MEDLINE | ID: covidwho-2294504

ABSTRACT

Aspergillus fumigatus is the most commonly isolated fungus in chronic lung diseases, with a prevalence of up to 60% in cystic fibrosis patients. Despite this, the impact of A. fumigatus colonisation on lung epithelia has not been thoroughly explored. We investigated the influence of A. fumigatus supernatants and the secondary metabolite, gliotoxin, on human bronchial epithelial cells (HBE) and CF bronchial epithelial (CFBE) cells. CFBE (F508del CFBE41o-) and HBE (16HBE14o-) trans-epithelial electrical resistance (TEER) was measured following exposure to A. fumigatus reference and clinical isolates, a gliotoxin-deficient mutant (ΔgliG) and pure gliotoxin. The impact on tight junction (TJ) proteins, zonula occludens-1 (ZO-1) and junctional adhesion molecule-A (JAM-A) were determined by western blot analysis and confocal microscopy. A. fumigatus conidia and supernatants caused significant disruption to CFBE and HBE TJs within 24 h. Supernatants from later cultures (72 h) caused the greatest disruption while ΔgliG mutant supernatants caused no disruption to TJ integrity. The ZO-1 and JAM-A distribution in epithelial monolayers were altered by A. fumigatus supernatants but not by ΔgliG supernatants, suggesting that gliotoxin is involved in this process. The fact that ΔgliG conidia were still capable of disrupting epithelial monolayers indicates that direct cell-cell contact also plays a role, independently of gliotoxin production. Gliotoxin is capable of disrupting TJ integrity which has the potential to contribute to airway damage, and enhance microbial invasion and sensitisation in CF.

13.
mBio ; : e0242522, 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2293712

ABSTRACT

Human fungal infections (mycoses) cause significant morbidity and mortality in high-risk populations. Contemporary antifungal therapies rely heavily on three classes of antifungal drugs, and to date, no fungal vaccine is in clinical use for invasive mycosis. A major gap in knowledge related to fungal vaccine development is identifying lasting mechanisms of protective immunity in immunocompromised individuals. Recent studies in Cryptococcus neoformans and now Aspergillus fumigatus have identified a fungal sterylglucosidase essential for pathogenesis and virulence in murine models of mycoses. Fungal strains deficient in this sterylglucosidase can surprisingly also induce substantial immune-mediated protection against subsequent challenge with wild-type strains in multiple immunocompromised murine models of mycoses. Here, I discuss the implications and future directions of these exciting and impactful results.

14.
Journal of Arthroscopy and Joint Surgery ; 10(1):29-35, 2023.
Article in English | ProQuest Central | ID: covidwho-2277894

ABSTRACT

Corticosteroids have been a mainstay in the treatment protocols and guidelines of COVID-19. However, its use in high dosage or for extended duration renders patients immunocompromised after COVID-19 recovery, and thus, susceptible to secondary opportunistic infections. We report the two cases of septic hip arthritis due to Aspergillus species in corticosteroid immunosuppressed post-COVID-19 patients. One patient recovered successfully from the arthritis and subsequently underwent total hip arthroplasty with good outcome. The second patient presented late to us in a critical condition and had two comorbid conditions along with, due to which, in spite of all measures, could not be revived and succumbed to death. We highlight the issue of the rare cause of fungal hip arthritis in immunosuppressed post-COVID-19 patients and stress the necessity to remain vigilant and identify the causative organisms correctly, especially fungal pathogens in such susceptible populations in the present COVID-19 era.

15.
Journal of Cardiovascular Disease Research ; 13(8):835-842, 2022.
Article in English | CAB Abstracts | ID: covidwho-2277532

ABSTRACT

Background: The coronavirus disease 2019 (COVID- 19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread over the world. Although there are minimal microbiological and antibiotic data on COVID-19, bacterial co-infections have been related to poor outcomes in respiratory viralinfections. Adequate antibiotic use in conformity withantibiotic stewardship (ABS) recommendations is necessary during the pandemic. Material and procedure: We conducted a retrospective single-center cohort analysis of 140 adulthospitalised patients (ages 17-99) with confirmed COVID-19 who were admitted between February 16, 2021, and April 22, 2021, and who were discharged onMay 6, 2021. From 140 COVID-19 participants, the following clinical data was gathered: Men made up 63.5 percent of the participants, with a median age of 63.5 years (range 17-99). Results: According to local ABS recommendations, the most commonly administered antibiotic regimen was ampicillin/sulbactam (41.5 percent) with a median length of 6 (range 1-13) days. Urine antigen testing for Legionella pneumophila and Streptococcus peumoniaewas negative in all of the patients. In critically ill patients hospitalised to intensive care units (n = 50), co-infections with Enterobacterales (34.0%) and Aspergillus fumigatus (18.0%) were discovered. Blood cultures obtained at admission had a diagnostic yield of 4.2 percent. Conclusion: While bacterial and fungal co-infections are rare in COVID-19 patients, they are widespread in critically ill individuals. More investigation into the impact of antimicrobial therapy on therapeutic success in COVID-19 patients is essential to prevent antibiotic abuse. COVID-19 management might be improved with the aid of ABS standards. It's also necessary to look at the microbiological patterns of infectious consequences in COVID-19 individuals who are severely unwell.

16.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2280922

ABSTRACT

Background: Pulmonary cavitation as a radiological finding in COVID-19 has been documented in case reports and small case series with a variety of etiologies deemed responsible. However, there is no large data addressing the issue. Hence, we present the data of forty-two COVID-19 patients at our institute, who were diagnosed and evaluated for cavitary lung lesions. Methodology: Records of consecutive COVID-19 patients, diagnosed and evaluated for cavitary lung lesions over a period of three months from April to June 2021, were reviewed retrospectively. Result(s): 42 patients were diagnosed with cavitary lung lesions during study duration, 19 (45%) during the course of admission and 23 (55%) on readmission. Majority of patients (n=36, 86%) were detected with cavitary lung lesion between 4th to 7th week from symptom onset, while only 6 patients (14%) were detected in 2nd and 3rd week. Mean duration between symptom onset and evidence of cavity on chest tomography was 18 and 32 days in the course and readmission group, respectively. Mucor species, Aspergillus fumigatus and Candida albicans among fungal organisms and Acinetobacter baumannii and Klebsiella pneumoniae among bacterial organisms were predominantly associated with cavitary lesions. Conclusion(s): Cavitary lung lesions associated with COVID-19 are not uncommon and can be detected during the absorptive phase of disease itself or much later during readmission. We found that bacterial and fungal infections are commonly associated. Hence, prompt diagnosis and management should be initiated keeping these etiologies in mind to prevent further morbidity and mortality due to COVID-19.

17.
J Fungi (Basel) ; 9(3)2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2272823

ABSTRACT

BACKGROUND: Aspergillus fumigatus is a saprophytic fungus, ubiquitous in the environment and responsible for causing infections, some of them severe invasive infections. The high morbidity and mortality, together with the increasing burden of triazole-resistant isolates and the emergence of new risk groups, namely COVID-19 patients, have raised a crescent awareness of the need to better comprehend the dynamics of this fungus. The understanding of the epidemiology of this fungus, especially of CAPA isolates, allows a better understanding of the interactions of the fungus in the environment and the human body. METHODS: In the present study, the M3 markers of the STRAf assay were used as a robust typing technique to understand the connection between CAPA isolates and isolates from different sources (environmental and clinical-human and animal). RESULTS: Of 100 viable isolates that were analyzed, 85 genotypes were found, 77 of which were unique. Some isolates from different sources presented the same genotype. Microsatellite genotypes obtained from A. fumigatus isolates from COVID+ patients were all unique, not being found in any other isolates of the present study or even in other isolates deposited in a worldwide database; these same isolates were heterogeneously distributed among the other isolates. CONCLUSIONS: Isolates from CAPA patients revealed high heterogeneity of multi-locus genotypes. A genotype more commonly associated with COVID-19 infections does not appear to exist.

18.
Microbiol Spectr ; : e0512822, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2271674

ABSTRACT

Secondary infections caused by the pulmonary fungal pathogen Aspergillus fumigatus are a significant cause of mortality in patients with severe coronavirus disease 19 (COVID-19). Even though epithelial cell damage and aberrant cytokine responses have been linked to susceptibility to COVID-19-associated pulmonary aspergillosis (CAPA), little is known about the mechanisms underpinning copathogenicity. Here, we analyzed the genomes of 11 A. fumigatus isolates from patients with CAPA in three centers from different European countries. CAPA isolates did not cluster based on geographic origin in a genome-scale phylogeny of representative A. fumigatus isolates. Phenotypically, CAPA isolates were more similar to the A. fumigatus A1160 reference strain than to the Af293 strain when grown in infection-relevant stresses, except for interactions with human immune cells wherein macrophage responses were similar to those induced by the Af293 reference strain. Collectively, our data indicate that CAPA isolates are genomically diverse but are more similar to each other in their responses to infection-relevant stresses. A larger number of isolates from CAPA patients should be studied to better understand the molecular epidemiology of CAPA and to identify genetic drivers of copathogenicity and antifungal resistance in patients with COVID-19. IMPORTANCE Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) has been globally reported as a life-threatening complication in some patients with severe COVID-19. Most of these infections are caused by the environmental mold Aspergillus fumigatus, which ranks third in the fungal pathogen priority list of the WHO. However, little is known about the molecular epidemiology of Aspergillus fumigatus CAPA strains. Here, we analyzed the genomes of 11 A. fumigatus isolates from patients with CAPA in three centers from different European countries, and carried out phenotypic analyses with a view to understanding the pathophysiology of the disease. Our data indicate that A. fumigatus CAPA isolates are genomically diverse but are more similar to each other in their responses to infection-relevant stresses.

19.
J Family Med Prim Care ; 11(11): 7469-7475, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2270334

ABSTRACT

Airborne pathogens like Aspergillus bring the lungs in the frontline for defense. Pulmonary diseases caused by Aspergillus species are broadly classified as aspergilloma, chronic necrotizing pulmonary aspergillosis, invasive pulmonary aspergillosis (IPA), and bronchopulmonary aspergillosis. Intensive care unit (ICU) admission is required for a large number of patients associated with IPA. It is not yet known whether patients with coronavirus disease 2019 (COVID-19) are at a similar risk for IPA as for influenza. However, usage of steroids plays a leading role in COVID-19. The family Mucoraceae includes filamentous fungi of the order Mucorales, causing a rare opportunistic fungal infection known as mucormycosis. The most commonly reported clinical presentations of mucormycosis are rhinocerebral, pulmonary, cutaneous, gastrointestinal, disseminated, and others. Here, we report a case series of invasive pulmonary infection by various fungi like Aspergillus niger, Aspergillus fumigatus, Rhizopus oryzae, and Mucor species. Specific diagnosis was made based on microscopy, histology, culture, lactophenol cotton blue (LPCB) mount, and chest radiography and computed tomography (CT). To conclude, opportunistic fungal infections like those due to Aspergillus species and mucormycosis are most commonly associated with hematological malignancies, neutropenia, transplant patients, and diabetes. Therefore, early diagnosis by direct microscopy, surgical interventions, and effective antifungal treatment form the ideal management for invasive fungal infections like aspergillosis and mucormycosis, instead of waiting for the culture reports.

20.
Practical Diabetes ; 40(1):45112.0, 2023.
Article in English | EMBASE | ID: covidwho-2241461
SELECTION OF CITATIONS
SEARCH DETAIL